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PREDICTORS OF GRADUATION RATES: WHY THEY CAN BE

EXPECTED TO HAVE GREATER PREDICTIVE VALUE AT THE

NATIONAL LEVEL THAN AT THE INSTITUTIONAL LEVEL

Abstract:

National studies of students, and studies which compare institutions, have

identified many predictors of students' graduation rates including socio-economic status

and admission selectivity. When you apply these predictive variables to data from your

own school, you may find that they have less predictive power. This paper presents a

theoretical explanation of why we might expect to see this pattern, and uses SAS to

estimate a hierarchical linear model of the size of the inter-institutional and the intra-

institutional effects of admission selectivity on graduation rates for a seven-year panel of

data on several colleges and universities.

This statistical phenomenon can be interpreted in a variety of ways: measuring

"within groups" effects vs "between groups" effects; analyzing "time-series" data vs

"cross-sectional" data; regression analysis with unobserved or omitted variables which

cause the error term to be correlated with the explanatory variables; intra-institutional vs

inter-institutional or national data in short, the distinction between looking at data from

your own college and data from national data sources.
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I. INTRODUCTION

National studies of students, and studies which compare institutions, have

identified many predictors of students' graduation rates, including socio-economic status

and admission selectivity. When you apply these predictive variables to data from your

own school, you may find that they have less predictive power. This paper presents a

theoretical explanation of why we might expect to see this pattern, and uses SAS to

estimate a hierarchical linear model of the size of the inter-institutional and the intra-

institutional effects of admission selectivity on graduation rates for a panel of data on

several colleges and universities. One lesson is that there can be a big difference between

comparing data from your school to data from other schools, and comparing your

school's data across time.

Many of the major ideas in this paper looking at the effect of first-generation

college status on graduation rates, looking at admit rates as a predictor of graduation

rates, and using hierarchical linear models were directly inspired by previous

presentations at the California Association for Institutional Research (CAIR) Annual

Conference and other conferences. So I hope that yet another lesson of this paper is that

conference attendance can lead to a fruitful exchange of ideas.

II. BACKGROUND

At the 1998 CAIR Conference, presenters from Pasadena City College and the

University of LaVerne noted that first-generation college status was not a good predictor

of retention at their campuses. At my own campus, I had also discovered this to be true.
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Yet many national studies have identified socio-economic status, including parental

education, as an important predictor of college graduation rates. (Adelman (1999)

however has found that parental education and even socio-economic status have weaker

or no predictive value when other variables such as "intensity and quality of academic

curriculum in high school" are taken into account.)

At another conference in early 2001, a presenter, Steve Butts from Lawrence

University in Wisconsin, looked at a predictor of graduation rates which many of us had

not examined before: the school's admit rate, that is, what percent of applicants it

admitted. He found that when he looked at several schools' admit rates and graduation

rates, the correlation was very strong -- higher than .7.

Several of us wondered if a school could similarly look at the admit rates of the

cohorts it admitted over the years, and if these admit rates would help predict the cohorts'

graduation rates. We went back to our campuses and looked at our data; most, though

not all, of us found virtually no relationship.

There is a pattern here: national studies, or studies which compare students at

different institutions, find that variables such as first-generation status and admit rates can

be used to predict a school's graduation rate. But when individual schools look at their

own data, often those same variables have little predictive value.

I believe that there are theoretical reasons why this pattern may frequently arise.

In this paper I describe the theoretical reason, and then apply that theory to a panel of

data which permits me to estimate both the inter-institutional and intra-institutional

effects of schools' admit rates on their graduation rates. "Panel data" are data from a

cross-section of schools but observed longitudinally, across time.

2

5



This model, and the panel data, can be best estimated using hierarchical linear

models. At yet another CAIR conference some 10 years ago, some presenters from

UCLA described hierarchical linear models. Nowadays there are several statistical

packages, including SAS and HLM, which can estimate hierarchical linear models with a

minimum of programming expertise needed. In this paper I give a brief description of

hierarchical linear models and how to estimate them using SAS.

III. A THEORETICAL EXPLANATION

Figure 1 shows possible regression lines, if we regressed any measure of retention

on any variable ("A") which may affect retention "A" could represent test scores,

socio-economic status, admit rate, high school record, or any such variable. Different

FIGURE 1: A POSSIBLE EXPLANATION:
NATIONAL VS INSTITUTIONAL DATA

Retention

Ivy College

Middle College

Podunk U
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collleges have students of different academic abilities, and some of them ("Ivy College")

have higher graduation rates as a result. Yet the regression line for any one college is

shallower than the national regression line.

A possible reason for this pattern is that students at each school do NOT represent

a random sample from the national population. Instead there are important self-selection

factors involved: schools can choose to admit or not admit a student (on the basis of "A"

or any other characteristics), and students can choose to matriculate at that school or not.

To see this, start with Figure 2, which shows hypothetical national data showing

the relationship between "A" and retention.

Retention

FIGURE 2: WHY WE MIGHT EXPECT TO
SEE FLATTER INSITUTIONAL

REGRESSION LINES (Part1 of 4)

4110 41110

"A" = any measure of academic ability

"A"

If students went to schools based solely on "A", for example on the basis of their

SAT scores, then each school might have data that appears as in Figure 3.
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FIGURE 3: IF STUDENTS WENT TO
SCHOOLS BASED ON "A" (Part 2 of 4)

Retention

A"

In Figure 3, some schools have high SAT students and high retention rates, others

have lower scoring students and retention rates. But each individual school has data that

show the same relationship between retention and "A" each individual school has a

regression line with the same slope.

However, there is good reason to believe that many students will not go to schools

solely on the basis of "A". We can hypothesize that some students may look superficially

similar on the basis of "A", but end up at different schools due to important differences,

differences which are not measured by "A".

This is perhaps best illustrated by using an example: let "A" be students'

combined SAT scores. Consider students with 1200 SAT scores. In general, they can be

expected to have higher graduation rates than students with 1100 SATs, based on national

data.
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But at any one school, that relationship may be much weaker. Ifwe observe one

such 1200 SAT student at high selectivity "Ivy College", another attending "Medium

College" and a third attending low selectivity "Podunk University", it is reasonable to

believe that those students differ from each other in important ways. The student who got

admitted into Ivy College has important characteristics, not measured by the 1200 SAT

score, which (a) got him or her admitted into Ivy College and (b) will make him or her

more likely to graduate. These unobserved characteristics could be high school grades,

writing ability, self-discipline, or any other characteristics which lead to matriculation at

a college such as Ivy College, and which also lead to higher probabilities of graduation.

This is illustrated in Figure 4; note the flatness of the regression line for each

individual school. The big dot in Figure 4 might represent a student with a 1200 SAT; in

Figure 3 this person went to Ivy College but in Figure 4 she goes to Middle College.

Compared to other students with 1200 SAT scores, she has a lower probability of

graduating, due to characteristics which may be detectable by Ivy College.

FIGURE 4: IN FACT,SCHOOLS AND STUDENTS
MAKE CHOICES --NON-RANDOM OUTCOMES (Part 3 of 4)

Retention

Podunk
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So the result is regression lines that have the relationship that we've observed

with the reports from Pasadena City College, the University of La Verne, and Lawrence

University: when we look at students (or schools) from across the nation, we observe a

relatively steep regression line one with slope "b Nat'l" in Figure 5. When we look at

students from an individual school (or at a school across time), we observe shallower

regression lines ones with slope "b Insel" in Figure 5.

FIGURE 5: SO THE NATIONAL DATA AND
INSTITUTIONAL DATA WILL SHOW

DIFFERENT REGRESSION SLOPES (Part 4 of 4)

Retention

Middle

Individual schools
Podunk have slope = "b Instl"

Nat'l slope ="b Natl"

Ivy

IV. PANEL DATA

To investigate the phenomenon of differing national and institutional

relationships, we need a data set that combines national and institutional data. Because

data on admit rates and graduation rates are easily available, I investigated their



relationship. There are of course many other factors which affect students' retention

rates, but in this study I am not attempting to look at all possible factors. Pm focusing on

one factor admit rates and seeing how it is related to graduation rates, at the national

and the institutional level.

If we have data on admit rates and graduation rates from one year on a variety of

schools, we have what are called "cross-sectional" data. But to see how differing admit

rates at one school affect its graduation rates, we need to observe that school for several

years in other we need what are called "time series" data.

In other words we need "panel data": a cross-section of schools, observed across

time.

I have gathered two panel data sets. The first one includes data from the Higher

Education Data Sharing Consortium (HEDS) and includes only private schools. I looked

at 4-year and 5-year graduation rates and admit rates. Because much of those data are

proprietary, I created a second data set using only publicly available data: 6-year

graduation rates from NCAA Graduation Rate reports, and admit rate data from the

America's Best Colleges Guide from USNews and World Report.

The first data set includes 13 schools, observed for up to 5 years (fall 1992

through fall 1996 freshman cohorts). Results from this data set are not reported in this

paper, but are very similar to the results from the second data set. The 13 schools are:

Beloit College Brandeis University

DePaul University Grinnell College

Reed College Swarthmore College.
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Tulane Univesity

Claremont McKenna

Occidental College

Univ of Notre Dame



Whittier College

The second data set, whose analysis will be reported in this paper, has 28 schools

observed for up to 7 years (fall 1988 through fall 1994 freshman cohorts). The schools

are:

Beloit College Brandeis University Bucknell University Carleton College

Cleveland State Univ CSU Fresno DePaul University Drake University

Grinnell College Harvard University Jacksonville Univ Lafayette College

Lamar University Lawrence University Occidental College Ohio State Univ

Rutgers University San Jose State Univ SE Lousiana Univ Southern Utah U

Swarthmore College Tulane Univesity Univ of Notre Dame Univ of the Pacific

UC Berkeley UCLA USC Whittier College

V. GRAPHICAL RESULTS

Figure 6 shows a scatterplot of the 6-year graduation rates and admit rates for

each cohort at each school. Notice that the scatterplot overall shows a strong relationship

between graduation rates and admit rates. But not shown in this scatterplot are the

identities of the individual schools. For that, see Figure 7.

9
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Figure 7 illustrates how the data points for individual schools cluster tightly on

the scatterplot. Figure 7 also has a dark line showing a simple regression line running

through the entire data set, and many lighter lines showing simple regression lines

through the observations for each individual school.
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Although some schools such as Bucknell, Grinnell, and Southeast Louisiana State

exhibit strongly downward-sloping regression lines, most schools have regression lines

which are appreciably shallower than the national line. Several schools, including UC

Berkeley, UCLA, Beloit College, and the University of the Pacific, have lines which even

seem to slope upward.

Thus this graph suggests that the data support the hypothesis illustrated in Figure

5: nationally, the relationship between schools' admit rates and their graduation rates is

strong. But for any one school, variations in its admit rate often do not cause much
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change in its graduation rate.

The graphs tell a good story, but to get a quantitative estimate of the slope of the

national regression line ("b Nat'l") and of the slope of the typical institutional regression

line ("b Inst1"), we need a type of regression analysis (or Analysis of Covariance) which

permits us to estimate those slopes in one big model. Fortunately, such models are

readily available: hierarchical linear models.

VI. HIERARCHICAL LINEAR MODELS

At yet another CAIR Conference in the early 1990s, some presenters from UCLA

talked about hierarchical linear models. Such models are useful when there are two or

more levels of explanatory variables. For example, students' reading scores in

elementary school can be partly explained by a variety of variables associated with

individual students their IQ, gender, socio-economic status, etc. But their reading

scores may also be affected by the quality of the elementary school they attend, the

quality of the teacher, the curriculum used, etc. in other words, variables which are

associated with an entire classroom of students, not with an individual student.

One can estimate the effects of all of these variables using standard statistical

techniques such as multivariate linear regression. But such techniques do not make full

use of the qualities of the data, in particular the fact that several groups of students will

have shared characteristics, namely the classroom that they share. This is somewhat

analogous to the difference between the graphs in Figures 6 and 7. Figure 6 failed to

illustrate some important relationships in the data, such as that Harvard students attend a

school with consistently low admit rates and high graduation rates (though not higher

12
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than predicted by the national regression line).

Hierarchical linear models in this example can be thought of as estimating two

levels of relationships: the relationship between individuals' characteristics and their

reading scores, and the relationship between classroom's characteristics and their mean

reading scores. In general, hierarchical linear models can be used whenever you have

explanatory variables from different "levels".

In the case of admit rates and graduation rates, we are trying to measure the

impact of admit rates on two levels: the institutional level (looking at one school across

time) and the national level (looking at a number of different schools). And hierarchical

linear models permit us to do this.

According to Bryk and Raudenbush (1996), hierarchical linear models are used in

several fields, often under different names: "multilevel models" in sociology, "mixed-

effects" and "random-effects" models in biometrics, "covariance components models" in

statistics, and "random coefficient regression models" in econometrics.

In recent years, statistical packages have appeared which estimate hierarchical

linear models automatically: HLM and SAS to name two. In the case of SAS, one uses

the procedure Proc Mixed.

VII. SPECIFICATION OF THE MODEL

With our panel data set, the two levels of the hierarchical level model are the

national level and the institutional level. At the national level, we are seeing how

different schools' admit rates affect their graduation rates. At the institutional level, we

are seeing how one school's admit rates affects its graduation rates.

13 6



We can't use the same explanatory variable, admit rates, in both levels. That is

essentially like trying to use one variable twice as an explanatory variable in a regression.

Fortunately there is an easy and natural solution: at the national level, look at each

school's overall admit rate in other words, its mean admit rate. Harvard on average has

low admit rates and high graduation rates. Non-selective schools have the opposite. So

at the national level, mean admit rates provide the explanatory power we need to

distinguish the Harvards from the non-selective schools.

At the institutional level, an alternative to looking at a school's admit rates and

graduation rates is to look at how changes in its admit rates cause changes in its

graduation rate. So we will use as an explanatory variable the DIFFERENCE between

the school's admit rate in any given year and its mean admit rate.

Here are the equations for this model. Let "adm_mean" be a school's mean admit

rate, "adm_dif' be the difference between its admit rate and its mean admit rate, and "y"

be the 6-year graduation rate for that cohort at that school. The letters "i" and "t" are

indices for schools and time respectively. That is, i ranges from 1 to 28 because we have

28 schools. t ranges from 1988 to 1994 because we are looking at cohorts from those

years. The letter "b" indicates a parameter to be estimated by the model, i.e. a slope

coefficient or a constant term from the regression.

At the institutional level, the equation is

yit = bi + (bi Instl) *adm_dif + eit (1)

where bi is the constant term (different for each school, hence the index letter i), and will

14
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be equal to each school's mean graduation rate. "bi Instl" is the slope coefficient for

adm_dif; this is the parameter which measures the relationship between changes in a

school's admit rate and its graduation rate. eit is the random error term, also known as a

residual.

The hypothesis is that the "bi Instl" values are relatively small for most schools,

that the relationship between changes in a school's admit rates and its graduation rate is a

weak one.

At the national level, the hypothesis is that there IS a relationship between a

school's mean admit rate and its graduation rate. That is, the bi term will be higher for

certain schools, such as Harvard, which have low adm_mean values. In addition, we

want to recognize the possibility that different schools might have different "bi Instl"

values (e.g. Figure 7 suggests that Bucknell has a fairly large negative "bi Instl" but UC

Berkeley and UCLA may have positive ones). So the equations for the second level of

the hierarchical linear model are

bi = c0 + (b Natl) *adm_mean + ui

(bi Instl) = b0 + vi

(2)

(3)

The first equation says that each school's constant term, bi, is determined by a

universal constant cO, the school's mean admit rate adm_mean, and a residual term, or

random error term, ui.

The second equation says that each school's adm_dif slope coefficient, "bi Instl",

is determined by an overall slope coefficient b0, and a residual term vi.

15
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We can combine these equations into a single equation for the whole model

yit = c0 + (b Nati)* adm_mean + ui +

b0*adm_dif + vi*adm_dif + eit (4)

There are two explanatory variables in this equation, adm mean and adm_dif.

Adm_mean is what is known as a "fixed effect" because it is in the model as an ordinary

explanatory variable. Adm_dif is a "random effect" because in addition to having the

fixed slope coefficient b0, it also a random effect vi*adm_dif. The constant term is also a

random effect; in addition to the fixed coefficient cO, it also has a random effect ui.

These models which combine fixed effects and random effects are often called

"mixed models."

There is one other aspect of model specification which we must address:

linearity. The scatterplots in Figures 6 and 7 suggest that the relationship may not be a

linear one; the scatterplots appear to have some concavity. A simple linear regression

including a squared term for admit rates as well as a linear term confirmed this. This

problem is not uncommon when the dependent (and for that matter independent)

variables are measured as percentages or proportions, and are thus limited to a range from

0 to 1.

A good solution is to transform the data so their range is not limited. A

commonly used transformation is the logit or logistic transformation. If "p" is a

probabililty, the logit of p is

16



logit = In( (p/(1-p) ) (5)

p/(1-p) is the odds transformation (transforming a probability into the equivalent

odds). A logit is the natural logarithm of the odds. The transformed variable has a range

from negative infinity to positive infinity and thus unlike probability does not have a

restricted range.

I transformed the schools' graduation rates using the logit transformation. I did

not do so for their admit rates; while such a transformation might be desirable, some

schools in some years had 100% admit rates, and thus the logit function cannot be applied

to them (it would require dividing by 0). The transformed data are displayed in Figure 8.
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This scatterplot appears to show greater linearity than the plots with

untransformed data, and a regression with squared admit rate had a non-significant

coefficient, suggesting that there may be no significant non-linearities.

So the actual estimation of the hierarchical linear model uses the logit of schools'

6-year graduation rates as the dependent variable, yit.

Here are some basic statistics for the variables in the data set. There are 28

schools, each with up to 7 years of data (fall 1988 to fall 1994). 165 observations total.

Variable Mean Std Dev Min Max

Grad6 .64 .23 .19 .97

Logit6 .77 1.22 -1.45 3.48

Admit .66 .21 .14 1.00

Adm_mean .66 .20 .16 .98

Admdif 0.0 .05 -.19 .12

VIII. SAS PROC MIXED

In recent years a number of statistical packages have appeared which can estimate

hierarchical linear models automatically. HLM is one such package, and SAS is another,

with version 8's (and I believe version 7's) proc mixed procedure.

The SAS command for estimating the hierarchical linear model that we have

18 2 1



hypothesized is

Proc mixed;

Class college;

Model logit6 = adm_mean adm_dif /solution;

Random int adm_dif /type= unstructured subject=college solution;

Run;

"Class college" simply tells SAS that college is a categorical variable, as opposed

to numeric. The "model" command tells SAS that the dependent variable is logit6, and

the explanatory variables are adm_mean and adm_dif, plus a constant term (included by

default). The "random" command tells SAS that the constant term (intercept) and

adm_dif are random effects, not fixed effects. The " /type" command tells SAS what

error or residual structure to assume. "Unstructured" makes the least assumptions. The

"subject=college" command tells SAS that we have panel data with "college" identifying

the different "subjects." The "/solution" commands tell SAS to display individual

coefficient estimates, instead of suppressing them.

IX. RESULTS.

The equation for the model again is

yit = c0 + (b Natl) *adm mean + ui + b0*adm_dif + vi*adm_dif + eit



The estimates for the fixed terms are

Coeff Std Err t-stat

constant = 4.39 .394 11.15

b Natl = -5.44 .57 -9.51

b Instl = -.40 .42 -.94

As hypothesized, adm_mean has a strong relationship with a schools' graduation

rate, with a highly significant (p<.0001) t-statistic. However, overall adm_dif does not

(p=.36); changes in a school's admit rates over time do not show a relationship with its

graduation rate, on average.

The random terms (ui, vi, and eit) have the following estimated variances:

Estimated variance of ui = .38

vi = 2.42

eit = .018

The individual schools have the following estimated vi terms (recall from

equation (3) that their slope coefficients on adm_dif are the sum of "b Instl" and vi):

College Estimate
of vi

Std,
Error

T-value Pr > itt

Beloit -0.01 1.37 -0.01 0.995
Brandeis -1.21 1.27 -0.95 0.342
Bucknell -3.50 0.74 -4.74 <.001
Carleton -0.49 1.31 -0.38 0.708
Cleveland State 0.51 1.26 0.41 0.686
CSU Fresno 0.83 1.01 0.82 0.413
DePaul 0.42 0.90 0.47 0.638
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Drake U -0.46 1.05 -0.44 0.660
Grinnell -1.60 1.26 -1.27 0.208
Harvard 0.71 1.34 0.53 0.599
Jacksonville U 0.75 0.60 1.25 0.215
Lafayette -0.73 0.65 -1.13 0.261
Lamar 0.90 0.99 0.91 0.367
Lawrence -1.26 1.24 -1.01 0.313
Occidental 0.28 1.06 0.26 0.794
Ohio State -0.76 0.93 -0.82 0.412
Rutgers 0.85 1.20 0.71 0.480
San Jose State 0.79 1.23 0.64 0.523
SE Louisiana U -0.97 0.69 -1.41 0.162
Southern Utah U -0.52 1.02 -0.51 0.614
Swarthmore 0.31 1.06 0.29 0.772
Tulane -0.24 1.00 -0.24 0.812
U Notre Dame 1.00 0.82 1.22 0.225
U Pacific 1.75 0.92 1.9 0.060
UC Berkeley 1.91 1.12 1.71 0.090
UCLA 1.44 1.11 1.3 0.198
USC -0.38 1.21 -0.31 0.755
Whittier -0.31 1.25 -0.25 0.806

The individual schools have the following estimated ui terms (recall from

equation (2) that each school's constant term or intercept is the sum of the constant c0

and ui):

College Estimate Std, T-value Pr > Iti
Error

Beloit 0.26 0.14 1.80 0.075
Brandeis 0.81 0.14 5.80 <.001
Bucknell 0.75 0.15 5.14 <.001
Carleton 0.75 0.14 5.27 <.001
Cleveland State -0.03 0.22 -0.15 0.881
CSU Fresno -0.69 0.13 -5.21 <.001
DePaul -0.25 0.13 -1.93 0.057
Drake U 1.08 0.18 5.88 <.001
Grinnell 0.78 0.13 5.83 <.001
Harvard -0.08 0.31 -0.25 0.804
Jacksonville U -0.78 0.13 -6.00 <.001
Lafayette 0.01 0.16 0.06 0.951
Lamar -1.20 0.16 -7.27 <.001
Lawrence 0.78 0.16 4.93 <.001
Occidental -0.20 0.15 -1.36 0.178
Ohio State 0.38 0.16 2.38 0.019
Rutgers -0.50 0.15 -3.35 0.001
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San Jose State -0.68 0.15 -4.66 <.001
SE Louisiana U -0.34 0.22 -1.56 0.122
Southern Utah U -0.09 0.20 -0.46 0.644
Swarthmore -0.20 0.23 -0.87 0.386
Tulane 0.44 0.13 3.35 0.001
U Notre Dame 0.54 0.19 2.83 0.006
U Pacific 0.22 0.14 1.56 0.121
UC Berkeley -0.80 0.20 -4.06 <.001
UCLA -0.67 0.17 -3.85 <.001
USC 0.25 0.13 1.89 0.061
Whittier -0.52 0.14 -3.77 <.001

X. INTERPRETATION

The most important result is confirmation of the hypothesis that "b Natl" shows a

large and statistically significant negative relationship between schools' mean admit rates

and their graduation rates, while "b Instl" shows no significant relationship. Figure 9
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shows that national regression line, on the original scatterplot (with admit rate rather than

logit6 on the vertical axis). Note that the logistic transformation, leading to a curved

regression line, seems to model the data more effectively than a linear regression line.

The individual schools of course do show some diversity. Bucknell's estimated vi

is both highly negative and significant, suggesting that over the 7 years covered, changes

in its admit rates did indeed affect its graduation rates. But no other school had a vi

whose estimate was significantly different from 0 at the p=.05 level (of course, with only

7 observations of each school, it is hard to achieve statistical significance). In short, for

most schools, there is little evidence that changes in their admit rates during this 7 year

period led to changes in their graduation rates.

Figure 10 (which reverts to putting logit6 on the vertical axis, for the sake of
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linearity) shows both the simple trendlines and the regression lines from the hierarchical

linear model. We can see that in almost all cases they are very similar, so the hierarchical

linear model is producing coefficients which look "correct". There are some exceptions

(Beloit, Whittier, and Harvard) but a possible explanation is that Beloit and Whittier both

have only three years of data, hence their estimated "b Instl" values may reflect more of

the overall mean and less of their data. Harvard conceivably might be a type of outlier;

despite lying close to the national regression line, its admit rates and graduation rates are

outside the range of any other schools' in this sample.

The constant terms provide some hints about schools graduation rates; some

schools have graduation rates which put them above the national regression line and

some are below. There is a strong pattern for the schools that are most above the

regression line to be private while the schools that are most below the regression line tend

to be public. This is consistent with one of Astin's findings (1993). However, this is not

a full-fledged model for predicting graduation rates (it uses essentially only one

explanatory variable, admit rates, and ignores other predictors) so these results are only

hints, not conclusions.

X. CONCLUSION.

There seems to be good graphical and statistical evidence to support the claim that

at least some predictors of graduation rates, such as admit rates, have better predictive

value at the national, or cross-sectional, level than at the institutional, or time-series,

level. However this still leaves us with the fundamental question: do changes in admit



rates change a school's graduation rates, or don't they? If a school reduces its admit rate

from 80% to 40%, will its graduation rate rise?

One possible answer is: not in the short run (7 years or less), but maybe in the

long run. One or a few cohorts brought in with low admit rates will not affect a school's

graduation rate much, based on the "b Instl" estimates (unless the school is Bucknell). If

however a school PERMANENTLY reduces its admit rate, so that instead of being

among the 80% admit rate schools it is up among the 40% admit rate schools, then maybe

it would enjoy a higher graduation rate.

There may however be a better answer, one which utilizes the concept of

unobserved characteristics or unobserved variables. The answer could be along these

lines: we observe that schools' graduation rates differ, for reasons which are not well

explained by adm_dif, i.e. by changes in their admit rates. The true factors behind

schools' differing graduation rates may be unobservable (attention paid to students,

individual students' inherent persistence, etc.). Thus we can only observe that some

schools have higher graduation rates, and some lower, without knowing the true reason

why.

But in addition to these unobservable characteristics, there are some observable

characteristics of schools such as their mean admit rates, adm_mean which, if not

actual determinants of graduation rates, are correlated with such determinants. Hence,

adm_mean has a large and significant correlation with graduation rates, whereas adm_dif

does not.

So a more complete investigation of schools' graduation rates would look at other

variables in addition to adm_mean. Undoubtedly, the predictive value of adm_mean
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would decline as these other variables were added to the model. But I believe that the

pattern of stronger national correlations and weaker institutional correlations would

persist.

It is also worth noting that the additional variables that we could look at include

both institutional characteristics (many have already been identified by investigators such

as Astin (1993) teaching vs research orientation, Catholic denomination, etc.) and

characteristics of individual students (SAT scores, gender, ethnicity, intensity and quality

of academic curriculum in high school as suggested by Adelman (1999). etc.). When we

start looking at individual students' characteristics, we have introduced a third level of

explanatory variables, to add to the ones at the time series or cohort level (adm_dif) and

to the ones at the cross-institutional level (adm_mean). Hierarchical linear models would

be even more useful for these more detailed investigations.

Finally, I repeat the message of the utility of good conferences.' My introduction

to hierarchical linear models came at a CAM conference, and the realization that national

predictors may not work as well at the institutional level came from sharing findings at

another CAM conference. The final catalyst came from a HEDS conference. So keep on

conferencing!

XI. FURTHER READING.

Singer (1998) provides an excellent introduction to hierarchical linear models,

especially for SAS users. The book Littell et al (1996) is not quite as good and is more

focused on SAS users. Sullivan et al do not orient their discussion to SAS, but their

exposition is not as clear as Singer's. The book by Bryk and Raudenbush (1992) goes
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into much more depth and gives more theoretical background. Hsiao (1986) does not

focus on hierarchical linear models per se but gives an even more technical background.
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